Fuji Instrumentation \& Control

72 series
 Digital Temperature Controller Micro Controller PXR series

Features ... 2
Products range.............................. 6
Ordering code.................................. 7
Specifications................................... 8
Outline diagram/panel-cut 11
Connection diagram..................... 12
Functions... 14
Sensor fault operation….................. 17
Table of parameters18

Temperature controller PXW,PXZ,PXV

Features
 22

Ordering code 23
Specifications 24
Outline diagram/panel-cut 26
Connection diagram 27
Socket outline diagram 28
Table of alarm code. 29
Table of parameters 30

Digital thermostat PAS3

Specifications 32
Outline diagram/panel-cut 33
Connection diagram 33
Temperature controller list
PX series34

Manual operation (standard)

Front waterproof structure (standard)

The front display and operation section is waterproof in conformity with NEMA-4X:IP66. So the front panel is washable with water. (Use of the attached packing for waterproof is required.)

DIN rail mounting (PXR3)

Mountable to a DIN rail using the DIN rail mounting adapter available at option.
With this adapter, also mountable to a wall.

Terminal block protecting cover (PXR4)

Diversified control and tuning functions (standard)

Simple ON/OFF control, PID with auto tuning, fuzzy PID with auto tuning and PID with self-tuning are standard with PXR.

- Self-tuning

At power on, changing a set value or during external disturbance, tuning is made automatically so that the PID parameters are reoptimized

PID values could not be optimized.

- Fuzzy control

Suppresses the overshoot without wasting start up time. Also, quickly reverts to set points at the event of external disturbances

[1] Features

Various functions and abundant options

Standard equipment

1 Diverse control and tuning functions \cdots Capable of covering various controls within a wide range from simple ON/OFF control to fuzzy PID control.
2 Front waterproof structure (conforming with NEMA-4X:IP66) \cdots The front panel is washable with water.

Optional functions

1 Re-transmission output in 4 to $20 \mathrm{mADC} \cdots \mathrm{PV}$ (process value), SV (set value) and MV (manipulated output value) can be transferred to other measuring instrument.
28 -step ramp/soak function ... Allows use as a simple programmable controller with a set value program.
3 RS-485 communication … Selectable between MODBUS protocol and Z-ASCII (Fuji's original).Digital input \cdots SV (set value) is selectable and various events are executable by external switches, etc.Heating and cooling control \cdots Applicable to even a self-heating process.Heater burnout alarm \cdots Equipment damage can be prevented.Various alarm function … Delay action, excitation/non-excitation selection or latch function can be combined with alarm.Remote SV input \cdots SV (set value) can be selected with 1 to 5 V DC signals from outside.

Re-transmission output in 4 to 20 mA DC A cost corresponding to one temperature sensor can be reduced just by connecting a PV transfer signal to a recorder.

- Output signal:4 to 20 mA DC
- Kinds of output:Any one of process value (PV), set value (SV), control output (MV) and PV-SV (DV)

8-step ramp/soak function

Temperature gradient control of furnace

[Ramp soak function]

Temperature rise/fall pattern is controlled by setting a heat pattern

RS-485 communication

Via the RS-485 interface, PXR is connectable with a computer, programmable operation display and PLC.

Heating and cooling control

$\stackrel{\rightharpoonup}{V}$
For control of both heating and cooling with a single controller Heating and cooling outputs can be overlapped with each other or a dead band can be provided.

[Energy saving in cattle shed]

- Both heating and cooling are controlled with only one temperature controller utilizing its 2 control outputs.
- Power consumption can be curbed by controlling a cooling fan motor with inverter.

Heater burnout alarm

Alarm output will be issued when heater burnout is detected.

Various alarm function

Max. 3 points are settable.

	Kind of alarm	Action diagram
	Upper-limit absolute alarm	$\xrightarrow[\mathrm{ALn}]{\longrightarrow P V}$
	Lower-limit absolute alarm	
	Upper-limit absolute alarm (with hold)	
	Lower-limit absolute alarm (with hold)	
Deviation value alarms	Upper-limit deviation alarm	
	Lower-limit deviation alarm	
	Upper and Lower limits deviation alarm	
	Upper-limit deviation alarm (with hold)	
	Lower-limit deviation alarm (with hold)	
	Upper and Lower limits deviation alarm (with hold)	
	Range upper and lower limits deviation (ALM1/2 independent operation)	
	Range upper and lower limits absolate value	$\xrightarrow[\mathrm{AL2}]{\stackrel{\mathrm{AL}}{ } \mathrm{~A}} \longrightarrow \mathrm{PV}$
	Range upper and lower limits deviation	
	Rnge upper limit absolute value and lower limit deviation	
	Range upper limit deviation and lower limit absolute value	$\xrightarrow[A L 2 S V]{\stackrel{\mathrm{AL1}}{\stackrel{~ S V}{<}}} \mathrm{PV}$

Precise temperature control achieved by remote SV input from outside

[2] Products range

Type			PXR3	PXR4	PXR7	PXR5	PXR9
			-	28)		\square	a \square
External dimensions	Front size		$24 \times 48 \mathrm{~mm}$	$48 \times 48 \mathrm{~mm}$ 78.8mm	$72 \times 72 \mathrm{~mm}$ 79.7 mm	$\begin{gathered} 48 \times 96 \mathrm{~mm} \\ 78 \mathrm{~mm} \end{gathered}$	$96 \times 96 \mathrm{~mm}$ 79.5 mm
$\underset{\substack{\text { Control } \\ \text { method }}}{ }$	ONOFF		-	\bullet	\bullet	\bullet	-
	PID with auto tuning		\bullet	\bullet	\bigcirc	\bullet	\bullet
	Fuzzy PID with auto tuning		-	-	\bullet	\bullet	\bullet
	PID with self-tunin		-	\bullet	-	-	\bullet
	Heating and cooling (PID,fuzzy PID)		\bullet	\bullet	\bullet	-	\bullet
Input signal	Resistance bulb	Pt100	\bullet	\bullet	\bullet	\bullet	\bullet
	Thermocouple	J,K,R,B, , , , T, , , , P, PL II	\bullet	\bullet	\bullet	\bullet	\bullet
	Voltage/current	DC1-5V, DC4-20mA	-	-	-	\bullet	\bullet
$\underset{\text { signal }}{\text { Outur }}$	Control output1(heating)	Relay contact	\bullet	\bullet	\bullet	\bullet	\bullet
		SSR/SSC drive	\bullet	\bullet	\bullet	\bullet	\bullet
		DC4-20mA	\bullet	\bullet	\bullet	\bullet	\bullet
	Control output 2 (cooling)	Relay contact	\bullet	\bullet	\bullet	\bullet	\bullet
		sSR/SSC drive	\bullet	\bullet	\bullet	\bullet	\bullet
		DC4-20mA	\bullet	\bullet	\bullet	\bullet	\bullet
Manual operation (Note1)			-	-	\bullet	\bullet	-
Alarm output (option)			-(Max. 2 points)	-(Max. 3 points)	-(Max. 3 points)	-(Max. 3 points)	-(Max. 3 points)
Heater burnout laram (option)			-	-	-	\bullet	\bullet
8 -step ramp soak (option)			\bullet	-	\bullet	\bullet	\bullet
RS-485 communication (option)			\bullet	\bullet	\bullet	\bullet	\bullet
Digital input (option)			-(Max. 2 points)				
Re-transmission (4to 20mA DC)			-	-	-	-	-
Remote-Setpoint			-	-	\bullet	\bullet	\bullet
Power supply voltage	AC100~240V $50 / 60 \mathrm{~Hz}$ DC24V, AC24V 50/60Hz		\bullet	\bullet	\bullet	\bullet	\bullet
			-	-	\bullet	\bullet	\bullet
Front waterproof Structure			\bullet	-	-	-	\bullet
Exermal terminal structure			Plug-in terminal	M3 screw terminal	M3 screw terminal	M3 screw terminal	M3 screw terminal
DIN rail mounting			-	-	-	-	-
Terminal cover			-	\bullet	-	\bullet	\bullet
Applicable standards	UL, C-		\bullet	\bullet	\bullet	\bullet	\bullet
	CSA		-	\bullet	-	\bullet	\bullet
	CE mark		-	\bullet	\bullet	\bullet	\bullet

OOthers

DIN rail mounting type ($48 \times 48 \mathrm{~mm}$)

See PXW4, PXZ4 and PXV4 on page 22.

72×72mm size

See PXW7, PXZ7 on page 22.

[3] PXR Ordering code

Note 1: Process alarm (2 points) (the codes " F and G " in the 9th digit) cannot be specified.
Note 2: Control output 2 (the codes "A, C, and E" in the 7th digit) cannot be specified.
Note 3: Control output 2, communication digital input (2 points), alarm (2 points), and 24 V power supply (the codes " A , C and E " in the 7 th digit, " F and G " in the 9th digit, and " A, B, and C " in the 10th digit) cannot be specified.

PXR3 : Optional items

$48 \times 96 \mathrm{~mm}$ Size
$96 \times 96 \mathrm{~mm}$ Size

Note 1: Cannot be combined with heater break alarm
Note 2. (No. 2, 3, 6, 7 and H on the 9 th digit cannot be specified.)
Cannot be combined with RS485 + 1-point digital input.
(VOO and WOO on the 11, 12, and the 13th digits cannot be specified.)
Note 3: In the case of 2-point digital input, either of control output 2 or heater break alarm or R-SP can be selected.
(2-point digital input, control output $2+$ heater break alarm cannot be specified at the same time.)
Note 4: The parameter of manual operation is hidden when it is default setting.

The default settings of input signals, measured ranges, and setting values are shown below.

Thermocouple specified : Thermocouple K, Measured range: 0 to $400^{\circ} \mathrm{C}$,
Resistance bulb specified : Pt, Measured range: 0 to $150^{\circ} \mathrm{C}$, Setting value: $0^{\circ} \mathrm{C}$ Voltage, Current specified: Scaling: 0 to 100%, Setting value: 0\%

In any case other than the description above, specify input signals and measured range.
The input signals for the thermocouple and the resistance bulb can be switched with the front panel keys.

The default settings of control action is reverse for control output 1 and direct for control output 2.
The reverse and direct actions can be switched with keys on the face panel.

PXR4/5/9: Optional items

Contents	Model
Terminal Cover	PXR4/7 : ZZP PXR1-A230
CT for heater burnout alarm	PXR5/9: ZZP PXR1-B230
	1~30A: ZOZ* CCTL-6-S-H
	$20 \sim 50 \mathrm{~A}:$ ZOZ * CCTL-12-S36-8

Note 1: Cannot be combined with heater break alarm.
Note 2: In case of the combination 9th digit code:3, $7, F, G, H, M$ or P and PXR4 the following installation condition are required.

1) Max.ambient temperature: $40^{\circ} \mathrm{C}$
2) Individual mounting. (Side-by-side mounting is not allowed.)

Note 3: Cannot be combined with RS485 + 1-point digital input.
Note 4: (V and W cannot be specified on 11th digit.)
Note 4: In the case of control output 2, either of heater break alarm or remote SV input can be selected.
Note 5. A, C, E and R on the 7 th digit, and $2,3,6,7, H, D$ and P on the 9 th digit cannot be specified.)
Note 5: The parameter of manual operation is hidden when it is default setting.

[4] Specifications

Power supply voltage	$100 \mathrm{~V}(-15 \%)$ to 240 V (+10\%) AC, $50 / 60 \mathrm{~Hz}$ or $24 \mathrm{~V}(\pm 10 \%) \mathrm{AC} 50 / 60 \mathrm{~Hz}, 24 \mathrm{~V}(\pm 10 \%) \mathrm{DC}$
Power consumption	When using $100 \mathrm{~V} \mathrm{AC:} 6 \mathrm{VA}$ (PXR3), 8 VA (PXR4,7), 10 VA (PXR5,9) When using $220 \mathrm{~V} \mathrm{AC:} 8 \mathrm{VA}$ (PXR3), 10 VA (PXR4,7), 12 VA (PXR5,9) When using 24 V AC/DC: 8 VA (PXR3), 10VA (PXR4,7), 12 VA (PXR5,9)
Insulation resistance	$20 \mathrm{M} \Omega$ or more (500 V DC)
Dielectric strength	Power supply-ground ... 1500 V AC for 1 min Power supply-others ... 1500 V AC for 1 min Ground-relay output ... 1500 V AC for 1 min Ground-alarm output ... 1500 V AC for 1 min Others ... 500 V AC for 1 min
Input impedance	Thermocouple: $1 \mathrm{M} \Omega$ or more Voltage: 450Ω k or more Current: 250Ω (external resistor)
Allowable signal source resistance	Thermocouple: 100Ω or less Voltage: $1 \mathrm{k} \Omega$ or less
Allowable wiring resistance	Resistance bulb: 10Ω or less per wire
Reference junction compensation accuracy	$\pm 1^{\circ} \mathrm{C}\left(\right.$ at $\left.23^{\circ} \mathrm{C}\right)$
Input value correction	$\pm 10 \%$ of measuring range
Set value correction	$\pm 50 \%$ of measuring range
Input filter	0 to 900.0 sec settable in 0.5 sec steps (first order lag filter)
Noise reduction ratio	Normal mode noise ($50 / 60 \mathrm{~Hz}$): 50 dB or more Common mode noise (50/60 Hz): 140 dB or more
Applicable standards	UL (UL873) CSA (C22.2 No.24-93) ... Not available on 72x72mm size CE mark (LVD : EN61010-1, EMC : EN61326-1)

Control function of standard type

Control action	PID control (with auto tuning, self-tuning) Fuzzy control (with auto tuning)
Proportional band (P)	0 to 999.9% of measuring range settable in 0.1% steps
Integral time (I)	0 to 3200 sec settable in 1 sec steps
Differential time (D)	0 to 999.9 sec settable in 0.1 sec steps
Proportional cycle	1 to 150 sec settable in 1 sec steps Only for relay contact output or SSR/SSC drive output
Hysteresis width	0 to 50\% of measuring range For On/off action only
Anti-reset windup	0 to 100\% of measuring range Automatically validated at auto tuning
Input sampling cycle	0.5 sec
Control cycle	0.5 sec

Input section

Input signal	Thermocouple : J, K, R, B, S, T, E, N, PL I Resistance bulb : Pt100 Voltage, current: 1 to 5 V DC, 4 to 20 mA DC (Apply current input after connecting the furnished 250Ω resistor to input terminal.)
Measuring range	See measuring range table
Burnout	For thermocouple or resistance bulb input Control output upper/lower are selectable

Output section of standard type (control output 1)
Control output 1
Select one as follows
Relay contact: SPDT contact:
220 V AC/30V DC, 3 A (resistive load)
For PXR3, SPST contact
Mechanical life 10 million operations (no load)
Electrical life 100,000 operations (rated load)
Minimum switching current 100 mA (24 V DC)
For PXR3, $10 \mathrm{~mA}(5 \mathrm{~V}$ DC)
SSR / SSC drive (Voltage pulse):
ON: 17 to 25 V DC, For PXR3, 12 to 16 V DC
OFF: 0.5 V DC or less
Max. current: 20 mA or less
4 to 20 mA DC: Allowable load resistance 600Ω or less
For PXR3, 100 to 500Ω

Control functions of heating/cooling control type (option)

Control action	PID control (with auto tuning)
Heating side proportional band (P)	0 to 999.9 \% of measuring range
Cooling side proportional band (P)	Heating side "P" \times cooling side coefficient (Automatically set in auto tuning) Cooling side proportional band coefficient: 0 to 100.0 On/off action if $\mathrm{P}=0$
Integral time (I)	0 to 3200 sec (common to heating and cooling sides)
Differential time (D)	0 to 999.9 sec (common to heating and cooling sides)
P,I,D=0:ON/OFF action (without dead band) for heating and cooling I,D=0:Proportional action	
Proportional cycle	1 to 150 sec For relay contact output or SSR/SSC drive output only
Hysteresis width	0.5% of measuring range common to heating and cooling sides, For On/off action only
Anti-reset windup	0 to 100% of measuring range Automatically validated at auto tuning
Overlap, dead band	$\pm 50 \%$ of heating side proportional band
Input sampling cycle	0.5 sec
Control cycle	0.5 sec
Manual operation	Manual operation -3 to 103\% (except for PXR3)

Output section of heating/cooling control type (control output 2) (option) Control output 2

Select one as follows
Relay contact: SPST contact: 220 V AC/30V DC, 3A (resistive load) Mechanical life 10 million operations (no load) Electrical life 100,000 operations (rated load) Minimum switching current 100 mA (24V DC) For PXR3, 10 mA (5 V DC)
SSR/SSC drive (Voltage pulse): ON: 17 to 25 V DC, For PXR3, 12 to 16 V DC OFF: 0.5 V DC or less Max. current: 20 mA or less
4 to 20 mA DC: Allowable load resistance 600Ω or less For PXR3, 100 to 500Ω

Operation and display section

Parameter setting method	Digital setting by 3 keys With key lock function
Display	Process value/set value Selective display (PXR3 : Single display) 4 digits, 7 -segment LED
Status display LED	Control output, process alarm output, Heater burnout alarm output (unavailable for PXR3)
Setting accuracy	0.1\% or less of measuring range
Indication accuracy (at $23^{\circ} \mathrm{C}$)	Thermocouple: (0.5% of measuring range) 1 digit $1^{\circ} \mathrm{C}$ For thermocouple R at 0 to $500^{\circ} \mathrm{C} \ldots$ (1% of measuring range) 1 digit $1^{\circ} \mathrm{C}$ For thermocouple B at 0 to $400^{\circ} \mathrm{C}$... (5% of measuring range) 1 digit $1^{\circ} \mathrm{C}$ Resistance bulb, voltage/current: (0.5\% of measuring range) 1 digit

- Alarm (option)
\(\left.$$
\begin{array}{|l|l|}\hline \text { Alarm kind } & \begin{array}{l}\text { Absolute alarm, deviation alarm, zone alarm } \\
\text { with upper and lower limits for each } \\
\text { Hold function available (see page 15) } \\
\text { Alarm latch, Excitation/non-excitation selecting } \\
\text { function provided }\end{array}
$$

\hline Alarm ON-delay \& Delay setting 0 to 9999 sec settable in 1 sec steps

\hline Process alarm output \& Relay contact: SPST contact: 220 \mathrm{~V} \mathrm{AC/30} \mathrm{~V} \mathrm{DC,}

1 \mathrm{~A} (resistive load)

Mechanical life 10 million operations (no load)\end{array}\right\}\)| Electrical life 100,000 operations (rated load) |
| :--- |
| Minimum switching current 100 mA (5 V DC) |
| For PXR3, 10 mA (5 V DC). |
| MAX 2 points (PXR3), MAX 3 points (PXR4, 5, 7, 9) |
| output cycle 0.5 sec |

[4] Specifications

- Heater burnout alarm (option, unavailable for PXR3)

Heater current detection (option), unavailable for PXR3	Current detector: CTL-6-S-H for 1 to 30 A / CTL-12-S36-8 for 20 to 50 A Current detection accuracy: 10\% of measuring range Alarm settable range: 1 to 50 A Available only when control output is relay contact or SSR/SSC drive. However, detection is possible when control output ON lasts 500 ms or longer.
Heater burnout alarm output unavailable for PXR3	Relay contact: SPST contact: 220 V AC/30 V DC, 1 A (resistive load) Mechanical life 10 million operations (no load) Electrical life 100,000 operations (rated load) Minimum switching current $100 \mathrm{~mA}(24 \mathrm{~V}$ DC) 1 output, output updating cycle 0.5 sec

Digital input (option)

Points	1 or 2
Electrical specifications	5 V DC, approx. 2 mA (OFF judgment for 3 V DC or more, ON judgment for 2 V DC or less)
Input pulse width	Min. 0.5 sec
Function	
(any one settable)	Set value (front SV, SV1 to 3) changeover Control action start/stop Ramp/soak action start / reset Auto tuning start / stop Alarm latch cancel and built-in timer start

Timer function (option)

Start	By digital input
Setting	0 to 9999 sec settable in 1 sec steps
Action	Event ON-delay or OFF-delay
Signal output	Alarm output relay used. Up to 3 points available.

Communication function (option)

Physical specifications	EIA RS485
Communication protocol	Modbus ${ }^{\text {TM }}$ RTU mode or PXR protocol (Z-ASC I)
Communication method	2 wire method. Half duplex bit serial, start-stop sync type.
Data type	8 bits. Parity: odd/even/none.
Communication rate	9600 bps
Connection aspect	multi-drop/up to 32 controllers connectable including master station
Communication distance	Total extension 500 m or less.
RS232C / RS485	Isolated type
Signal converter	Manufacturer: RA Systems Corp. (Japan)
(recommendation)	Model: RC-77
	http://www.ras.co.jp
	Manufacturer: OMRON Co., Ltd (Japan)
	Model: KS3C-10
	http://www.omron.co.jp

Re-transmission output function (option)

Output signal	DC 4-20mA
Load resistance	500Ω or less (PXR3), 600Ω or less (PXR4, 5, 7, 9)
Output updating	500 ms
Output accuracy	0.3% FS (at $23^{\circ} \mathrm{C}$)
Resolution	2000 or more
Kind of output signal	Any one among PV, SV, DV and MV (selectable by parameter)

\square Remote setpoint

(option, not available on $24 \times 48 \mathrm{~mm}$ size)

Input signal	1 to 5 V DC, 1 point
Accurcy	$\pm 0.5 \% 1$ digit $\left(\right.$ at $\left.23^{\circ} \mathrm{C}\right)$
Input sampling cycle	0.5 sec
Input scaling	Allowed
Display of remote mode	LED on Front panel
Input impedance	$1 \mathrm{M} \Omega$ or more

Other functions

Parameter mask function	Parameter display is disabled by software.
Ramp/soak function (option)	2 program pattern of 4 steps each, or 1 program parttern $\times 8$ steps Digital input allows to start/reset the action.

Power failure processing

Memory protection Held by non-volatile memory

Self-check

Method
Program error supervision by watchdog timer
Operation and storage conditions

Ambient operating temperature	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Ambient operating humidity	Less than $90 \% \mathrm{RH}$ (no condensation)
Storage temperature	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

Optional items

Current detector (CT) (unavailable for PXB)	For 1 to 30 A: CTL-6-S-H For 20 to 50 A: CTL-12-S36-8 (see page 17)
DIN rail mounting adapter (for PXR3)	ZZP*CTK368715P1 (for outline diagram, see page 11)
Terminal cover	PXR4 : ZZPPXR1-A230 PXR5/9: ZZPPXR1-B230 (for outline diagram, see page 11)
Instruction manual	For communication function (see list of related documents on page 10)

Structure

Mounting method	Panel flush mounting PXR3 can be mounted to rail/wall by using the DIN rail mounting adapter available at option.
External terminal	Plug-in terminal (PXR3) or M3 screw terminal (PXR4, 5, 7, 9)
Case material	Plastic (non-combustible grade UL94V-0 equivalent)
Dimensions	See the outline diagram on page 11.
Weight	Approx. 150 g (PXR3), 200 g (PXR4), 250g (PXR7) 300 g (PXR5), 300 g (PXR9)
Protective structure	Front waterproof structure: NEMA4X (IEC standard IP66 equivalent)(when mounted on panel with our genuine packing. Waterproof feature unavailable in close mounting of multiple units) Rear case: EC IP20
Outer casing	Black (front frame, case)

Scope of delivery

Scope of delivery	Controller, panel mounting bracket, front watertight packing, instruction manual, 250 resistor (for current input)

Measuring range table

input signal		measuring range $\left({ }^{\circ} \mathrm{C}\right.$ C	measuring range $\left({ }^{\circ} \mathrm{F}\right)$
resistance bulb	Pt100	-199 to 850	-326 to 1562
Thermocouple	J	0 to 800	32 to 1472
	K	0 to 1200	32 to 2192
	R	0 to 1600	32 to 2912
	B	0 to 1800	32 to 3272
	S	0 to 1600	32 to 2912
	T	-150 to 400	-238 to 752
	E	-150 to 800	-238 to 1472
	N	0 to 1300	32 to 2372
	PL II	0 to 1300	32 to 2372
DC voltage	1 to 5 V	scaling range	-1999 to 9999
DC current	4 to 20 mA		

Note 1: For current input connect the supplied 250Ω resister at the input terminal.
Note 2: When the measuring range exceeds $1000^{\circ} \mathrm{C}\left(1832^{\circ} \mathrm{F}\right)$, decimal point cannot be used.

[4] Specifications

Insulation block diagram

Power supply section				Measure Heater curren Remote	
Relay contact control output 1					
Relay contact control output 2				Digital input (In case of R	
Alarm relay output 1					
Alarm relay output 2					
Alarm relay output 3 or heater break alarm output (PXR3 not included)			Communica Digital input (In case PXR3, 4		
\square Caution in use Control output					
Model	Voltage puls (for SSR drive)		DC 4 to 20 mA Allowable load resistance		
	Voltage	Max. Current			
PXR3	15V DC	20mA		to 500Ω	
PXR4, 5, 7, 9	24V DC	20 mA		S or less	
PXV3	5.5V DC	20 mA			
PXV	24 V DC	60 mA		明 or less	
PXW	24 V DC	60 mA		Ω or less	
PXZ	24V DC	60 mA		Ω or less	

Differences from other models are listed at left. For replacement,
check is required to see if the specifications of control end are satisfied.

Mounting to DIN rail (PXR3 only)

Mountable to a DIN rail using the DIN rail mounting adapter available at option. With this adapter, also mountable to a wall.

Terminal cover (PXR4)

The terminal block can be protected by the terminal cover available at option.

Caution on drilling in panel: In case of coating, etc. after drilling, the above dimensions must be followed in the finished status.

[5] Outline and Panel Cutout Dimensions

Type
Type

Type	Outline	Panel cut
PXR7		

Type
Type

Micro Controller PXR

[6] External connection diagram

Power supply 100 to 240 V AC 50/60 Hz

24V DC
24 V AC $50 / 60 \mathrm{~Hz}$ 8VA

Process alarm output 1

Usable wiring material

- Wire

Type: Single Wire
Gauge: AWG28 ($0.1 \mathrm{~mm}^{2}$) to AWG16 (1.25 mm²) Strip-off length: 5 to 6 mm

AWG28 to AWG16

Bar terminal
Dimension of strip-off conductor section: $2 \times 1.5 \mathrm{~mm}$ or smaller
Length of strip-off conductor section: 5 to 6 mm

(2) (3) (5)
input

- Without communication

function

[6] External connection diagram

PXR
 Micro Controller PXR

[7] Functions

Function0 Manual Operation

This function is selectable operation mode either "Auto" or "Manual" operation by change the parameter.
MV output value is changeable by manual operation on Manual mode.

- Operation mode is stored while power down.
- Changeover method: Auto \rightarrow Manual: Balanceless bump less Manual \rightarrow Auto: Balance bump less
- MV setting value resolution: 1% (Settable by front key)
- MV setting range: -3~103\%
- Auto-tuning and Self-tuning are not available while manual operation mode.

Function1 Control function

Fuzzy control function

Fuzzy operation is used to suppress overshoot so that the response to external disturbances is improved. By monitoring process value, overshoot is suppressed with the startup
time remaining unchanged. At the same time, response to external disturbances is also improved.

- Comparison between fuzzy control and conventional control

On/off action (2-position action)

When process value (PV) is below the set value (SV), output is turned on and the heater is energized as shown below. When PV is above SV, output is turned off and the heater is de-energized. In this way, output is turned on/off repeatedly with respect to the SV to keep the temperature constant. This method of control is called "on/ off action (2-position action)." - When " 0 " is assigned to parameter P , the on/off action will be selected.

On/off action hysteresis setting

In on/off control, output turns on/off with respect to the set value. Therefore, output would change frequently in response to a slight change in the temperature. This might shorten the service life of the output relay and adversely affect the equipment connected with the temperature controller. To prevent this, a gap (hysteresis) is provided in the on/off action. This action gap is usually called "hysteresis."

Example 1) Suppose that the temperature controller has a measuring range of 0 to $150^{\circ} \mathrm{C}$ and a hysteresis (HYS) of 10 . When the set value is adjusted to $40^{\circ} \mathrm{C}$, the heate turns off at $45^{\circ} \mathrm{C}$ and turns on at $35^{\circ} \mathrm{C}$. Example 2) For turning off the heater at $45^{\circ} \mathrm{C}$ in the figure at left, parameter [SVOF] should be set at "-5." Then, the heater turns off at $45^{\circ} \mathrm{C}$ and turns on at $35^{\circ} \mathrm{C}$. (The above action is effective when the ONOFF parameter is set at OFF.)

Changeover of output action
Direct action or reverse action is settable by parameter [P-n1].

- Reverse action

When process value (PV) decreases below the set value (SV), output changes so that control input increases.

- Direct action

When process value (PV) increases above the set value (SV), output changes so that control input increases.

Heating / cooling control (option)

By a single controller both heating and cooling control output are obtained (Both control outputs 1 and 2 are used.)

Function2 PID tuning function

Auto-tuning (AT)

PID parameters are autometically set by the controller's measurement and computation function. This instrument provides 2 types of auto-tuning functions; the standard type(auto-tuning with SV used as reference)and the ow SV type(auto-tuning with the value 10% below SV used as reference).
(a) Standard type

(b) Low PV type

Self-tuning function

At power on, changing a set value or during external disturbance, tuning is made automatically so that the PID parameters are reoptimized.

Function3 Alarm (option)

- Kind of alarm and alarm type code

| ALM1 | ALM2 | ALM3 | Alarm type | Operation figure | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Absolute
 value
 alarm | 1 | 1 | 1 | 0 | No alarm |

- Timer code

	ALM1	ALM2	ALM3	Alarm type	Operation figure
Timer	32	32	32	ON-delay timer	OFF-delay timer
33	33	33	OLM OFF- delay timer	ALM	

If change the kinds of parameter, please power ON/OFF PXR.

Note: (1) Alarm output is ON in the alarm band marked سIW
(2) What is alarm with hold?

The alarm is not turned ON immediately even when the measured
value is in the alarm band.It turns ON when it goes out the alarm band and enters again.

- Alarm code for setting value 2 points

	ALM1	ALM2	ALM3	Alarm type	Operation figure
Upper and lower limits alarm	16	16	16	Upper and lower limits absolute value	
	17	17	17	Upper and lower limits deviation	
	18	18	18	Upper limit absolute value and lower limit deviation	
	19	19	19	Upper limit deviation and lower limit absolute value	
	20	20	20	Upper and lower limits absolute value (with hold)	
	21	21	21	Upper and lower limit deviation (with hold)	
	22	22	22	Upper limit absolute value and lower limit deviation (with hold)	
	23	23	23	Upper limit deviation and lower limit absolute value (with hold)	
Range alarm	24	24	24	Range upper and lower limits absolute value	
	25	25	25	Range upper and lower limits deviation	
	26	26	26	Range upper limit absolute value and lower limit deviation	
	27	27	27	Range upper limit deviation and lower limit absolute value	
	28	28	28	Range upper and lower limits absolute value (with hold)	
	29	29	29	Range upper and lower limits deviation (with hold)	
	30	30	30	Range upper limit absolute value and lower limit deviation (with hold)	
	31	31	31	Range upper limit deviation and lower limit absolute value (with hold)	

Function4 $>$ Heater burnout alarm (option)

- Heater burnout is detected then the alarm is emitted immediately.
- Separate type current trasformer(CT)specified by Fuji should be used.
- Alarm action point can be set by front panel keys.
- Detection is made only on a single-phase heater.
- This function cannot be used when controlling a heater with thyrister phase angle control system.
- Example of the connection of the heater burnout alarm (type PXR5, PXR9)

[7] Functions

Function5 Parameter mask function

This instrument provides a function (parameter mask function) to mask (conceal) the display of individual parameters.
To effect parameter mask(non-display)or non- mask (display),appropriate values should be set to DSP1-13.

Example of setting to (DSP1-13)
(a) To mask parameter P

1) Check DSP value for Preferring to parameter table
2) Add 2 to the value set to DSP3

(b) To mask parametaer P,I,D
3) Check DSP value for P, I, D referring to parameter table.
4) Add $2+4+8=14$ to the value set to DSP3.

For allocation of DSP of each parameter, refer to the parameter table on Page18. DSP1-13 cannot be masked.

Function6 $>$ Ramp soak function (option)

Function of automatically changing the set point value with the elapsing of time, in accordance with the preset pattern, as shown below.This function is capable of programming a 2 program pattern of 4 steps each, or 1 program parttern $\times 8$ steps.

Function7 $>$ RS-485 Communication function (option)

With RS-485 (Modbus ${ }^{\text {TM }}$ protocol) interface, a connection with computer, touch panel or PLC is allowed.

Either communication protocol below is selectable. Selection should be made according to system configuration.

1) ModbusTM RTU mode:

An open protocol generally used in particular outside Japan. In case the host side supports this protocol, connection is allowed without a program.
2) Z-ASCII (Fuji's original)

Because transmission code is ASCII, programming with PLC, etc. is simple.

Function8 Digital input (option)

External digital input allows one of the following functions.

- Change the set value (Front SV, SV1-3)
- Start/stop the control action
- Start/reset the ramp/soak
- Start/stop the auto tuning
- Cancel the alarm latch
- Start the incorporated timer
* The above functions can be combined when two digital inputs are used.

Function9 $>$ Timer function (option)

By Digital input, ON-delay or OFF delay timer can be started. That is, relay output is turned on/off after certain period of time preset in parameter dLY1/dLY2/dLY3. As for relay output, alarm output relays are used. Up to 3 timer outputs can be obtained.

Function10 Analog Re-transmission (option)

- Output signal : 4 to 20 mA DC
- Kind of output : Any one of process value (PV), set value (SV), manipulated output value (MV) and process variable - set value (DV) (setting by front keys)

A cost corresponding to one temperature sensor can be reduced just by connecting a PV transfer signal to a recorder.

Function11 Remote SV input (option)

- SV (set value) can be selected with signals from outside.
- SV input signal: 1 to 5V DC

[8] Sensor fault operation

- Thermocouple

Condition		Display	Control output		
Break	\bullet			ON or more than 20mA OFF or less than 4 mA	(Note)
Short circuit	\bullet		short-circuit point Temperature display	Input is controlled as short-circuit point temperature.	(Note)

- Resistance bulb input

Condition		Display	Control output	
Break			ON or more than 20 mA OFF or less than 4mA	(Note)
		1111	OFF or less than 4 mA ON or more than 20 mA	(Note)
		$1 \begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 \end{array}$	ON or more than 20 mA OFF or less than 4mA	(Note)
	2-wire or 3-wire break			
Short circuit		$11 L 1$	OFF or less than 4mA ON or more than 20 mA	(Note)

-1-5V DC

Break	$1 \angle$		OFF or less than 4 mA ON or more than 20mA	(Note)
Short circuit				

-4-20mA DC

Over-range		OFF or less than 4 mA	(Note)
Under-range	111	ON or more than 20 mA	

(Note) Control output changes in operation according to the designation of burnout direction (parameter, "P-n1").
In case of Manual Mode, control output signal is MV output value.

Heater burnout alarm current detector (CT)

- Specification : For 20-50A
- Type : CTL-12-S36-8

- Specification : For 1-30A
- Type : CTL-6-S-H
"CTL-6-S" is printed on commodity as type.

［9］Parameter table

Parameter table PXR（1／4）

Parameters for the PXR are classified under three blocks according to the frequency of use．The parameters of the second and third blocks are used at initialization or when they are of absolute necessity．Some parameters may not be displayed at the time of delivery depending on the type．

－Parameters of the first block

Parameter display symbol	Parameter name		Description							Setting range	Value prior to delivery	User＇s set value	Parameter mask DSP
MRnLi	MAnU	Auto／Manual setting	Switches between Auto and Manual mode．							on ：Manual mode oFF ：Auto mode	OFF		dSP13－32
5563	STby	Standby setting	Switches between RUN and Standby for control．							on：Control standby （Output：OFF，Alarm：OFF） oFF：Control RUN	OFF		dSP1－1
CMad	CMod	Remote／Local setting	Switches between Remote and Local operations．							rEM ：Remote LoCL：Local	LoCL		dSP13－8
Prous	ProG	Ramp－soak control	Switches between Start，Stop， and Hold for ramp－soak control．							oFF：Stop rUn：Start HLd：Hold	OFF		dSP1－2
L L［H	LACH	Alarm latch cancel	Cancels the alarm latch．							0 ：Keeps the alarm latch． 1：Opens up the alarm latch．	0		dSP1－4
7r	AT	Auto－tuning	Used for setting the constants for P, L^{-}， and d by auto－tuning．							0：OFF（Resets the auto－tuning or does not use it．） 1：ON（Performs the auto－tuning in the SV standard type．） 2：ON（Performs the auto－tuning in low PV type（SV value－10\％FS）．）	0		dSP1－8
5n－1	TM－1	Timer 1 display	Displays the remaining time of timer 1.							－（Unit：seconds）	－		dSP1－16
「ก－2	TM－2	Timer 2 display	Displays the remaining time of timer 2.							－（Unit：seconds）	－		dSP1－32
「ח－3	TM－3	Timer 3 display	Displays the remaining time of timer 3.							－（Unit：seconds）	－		dSP1－64
剈 1	AL1	Set value of alarm 1	Sets the value at which alarm 1 is detected．			Type 1 to 3 Possible to set up within input range．				When the alarm type is absolute value： 0 to 100% FS When the alarm type is deviation： -100 to 100% FS	10		dSP1－128
只：－L	A1－L	Lower limit value of alarm 1	Sets the lower limit value at which alarm 1 is detected．				$\begin{gathered} \text { Ut range } \\ \hline \text { AL1 } \\ \text { to } \end{gathered}$	$\stackrel{\text { e. }}{\substack{\text { ent- } \\ \text { to }}}$	$\begin{array}{\|c\|} \hline \text { A1-L } \\ \text { to } \\ \hline \end{array}$		10		dSP2－1
只－H	A1－H	Upper limit value of alarm 1	Sets the upper limit value at which alarm 1 is detected．					АЗ－Н	A3－L		10		dSP2－2
别已	AL2	Set value of alarm 2	Sets the value during which alarm 2 is detected．				\bigcirc	\times	\times	When the alarm type is absolute value： 0 to 100% FS	10		dSP2－4
里－1	A2－L	Lower limit value of alarm 2	Sets the lower limit value at which alarm 2 is detected			$\text { d. }\left\|\begin{array}{l} 16 \\ \text { 1. } \\ \text { to } \\ 31 \end{array}\right\|$	\times	\bigcirc	\bigcirc	When the alarm type is deviation：	10		dSP2－8
日2－H	A2－H	Upper limit value of alarm 2	Sets the upper limit value at which alarm 2 is detected							－100 to 100\％FS	10		dSP2－16
㕱〕	AL3	$\begin{aligned} & \text { Set value of } \\ & \text { alarm } 3 \end{aligned}$	Sets the value at which alarm 3 is detected．			d． $\left\lvert\, \begin{aligned} & 32 \\ & \text { to } \\ & 34\end{aligned}\right.$	\bigcirc	\times	\times	When the alarm type is absolute value： 0 to 100\％FS When the alarm type is deviation： -100 to 100% FS	10		dSP2－32
呵－1	АЗ－L	Lower limit value of alarm 3	Sets th at whi	he lower lim ch alarm 3	imit value 3 is detected						10		dSP2－64
時－H1	АЗ－Н	Upper limit value of alarm 3	Sets th at whic	he upper lim ch alarm 3	limit value 3 is detected			Setting Setting	enable， disable		10		dSP2－128
LOL	LoC	Key lock	Setting of key lock status．								0		dSP3－1
				All para	rameters		SV						
			LoC	Front key	Comm－ unication	Front key		mm－					
			0	\bigcirc	\bigcirc	\bigcirc		\bigcirc					
			2	\times	0	\times		\bigcirc					
			2	\times	0	\bigcirc		\bigcirc					
			3	\bigcirc	\times	\bigcirc		\times					
			5	\times \times \times	\times \times \times	$\stackrel{+}{\times}$		\times \times \times					
			\bigcirc ：Setting enable，x ：Setting disable										

－Parameters of the second block

Parameter display symbol	Parameter name		Description	Setting range	$\begin{array}{\|l\|} \hline \text { Value prior } \\ \text { to delivery } \end{array}$	User＇s set value	Parameter mask DSP
p	P	Proportional band	Set \boldsymbol{P} to 0.0 to select the ON／OFF control （Two－position control）．	0.0 to 999．9\％	5.0		dSP3－2
Σ	i	Integral time	Integration OFF at 0	0 to 3200 seconds	240		dSP3－4
d	d	Differentional time	Differentiation OFF at 0	0.0 to 999.9 seconds	60.0		dSP3－8
Hy5	HYS	Hysteresis range for ON／OFF control	Sets the hysteresis for ON／OFF control．	0 to 50\％FS	1		dSP3－16
Cool	CooL	Cooling－side proportional band coefficient	Automatically set by auto－tuning function． Selecting 0 switches to cooling－side ON／OFF operation．	0.0 to 100.0	1.0		dSP3－32
db	db	Dead band	Shifts the cooling－side output value．	-50.0 to +50.0	0.0		dSP3－64
b㕩	bAL	Manual reset value	Do not modify the default value set at the factory．	－100 to 100\％	0．0／50．0		dSP3－128
Rr	Ar	Anti－reset windup	Automatically set by auto－tuning function．	0 to 100% FS	100		dSP4－1
［Fri	CTrL	Control algorithm	Selects the control algorithm．	Pid：Runs normal PID control． FUZY：Runs PID control with fuzzy logic． SELF：Runs PID control with self－running．	Pid		dSP4－2
51Fb	SLFb	PV（Measured value） stable range	Sets the PV stable range for the self－tuning operation．	0 to 100\％FS	2\％FS		dSP4－4
anat	onoF	Setting HYS （Hysteresis）mode	Selects the hysteresis operation at ON／OFF control．	oFF：Starts the two－position control at the values of SV＋HYS／2 and SV－HYS／2． on：Starts the two－position control at the values of SV and SV＋HYS，or SV and SV－HYS．	ON		dSP4－8
F［	TC	Cycle time of control output 1	Not shown at 4－20mA DC output	RY，SSR： 1 to 150 seconds （Contact output＝30，SSR／SSC－drive output＝2）	30／2		dSP4－16
FLI	TC2	Cycle time of control output 2 （cooling－side）	Not shown at 4－20mA DC output	1 to 150 seconds （Contact output $=30$, SSR／SSC－drive output＝2）	30／2		dSP4－32
P－nc	P－n2	Input signal code	Set this parameter when changing the types of temperature sensors．	1 to 16	Note 1		dSP4－64
－5L	P－SL	Lower limit of measuring range		－1999 to 9999	Note 1		dSP4－128
P－5id	P－SU	Upper limit of measuring range		－1999 to 9999	Note 1		dSP5－1
P－\square^{\prime}	P－dP	Setting the decimal point position		0 to 2	Note 1		dSP5－2
Punf	PVOF	PV（process value）offset	Shift the display of the PV．	－10 to 10\％FS	0		dSP5－8
5 Linf	SVOF	SV（Setting value）offset	Shift the SV．But the SV display is not changed．	－50 to 50\％FS	0		dSP5－16
P－df	P－dF	Time constant of input filier		0.0 to 900.0 seconds	5.0		dSP5－32
品只 1	ALM1	Alarm type 1	Sets the types of alarm operations．	0 to 34	0／5		dSP5－64
MLnc	ALM2	Alarm type 2	Sets the types of alarm operations．	0 to 34	0／9		dSP5－128
M1n3	ALM3	Alarm type 3	Sets the types of alarm operations．	0 to 34	0／0		dSP6－1
55%	STAT	Status display of ramp－soak		－	OFF		dSP6－2
Pron	PTn	Selecting ramp－soak execute type	Selects ramp－soak patterns．	1：Performs 1st to 4th segments． 2：Performs 5th to 8th segments． 3：Performs 1st to 8th segments．	1		dSP6－4
5u－i	Sv－1	1st target value／ Switching－SV value	Sets the 1st target SV of ramp－soak operation．／ Selected at switching－SV function for DI1	Within the SV limit．	0\％FS		dSP6－8
「п，ir	TM1r	First ramp segment time	Sets the first ramp segment time．	0 to 99h59m	0.00		dSP6－16
1715	TM1S	1st soak segment time	Sets the 1st soak segment time．	0 to 99h59m	0.00		dSP6－32

[^0]Micro Controller PXR

［9］Parameter table

Parameter table PXR（3／4）

－Parameters of the second block

Parameter display symbol	Parameter name		Description	Setting range	Value prior to delivery	User＇s set value	Parameter mask DSP
こい－コ	Sv－2	2nd target SV	Sets the 2nd target SV of ramp－soak operation．	Within the SV limit．	0\％FS		dSP6－64
FMJ\％	TM2r	2nd ramp segment time	Sets the 2nd ramp segment time．	0 to 99h59m	0.00		dSP6－128
1925	TM2S	2nd soak segment time	Sets the 2nd soak segment time．	0 to 99h59m	0.00		dSP7－1
5u－3	Sv－3	3rd target SV	Sets the 3rd target SV of ramp－soak operation．	Within the SV limit．	0\％FS		dSP7－2
「ワゴ	TM3r	3rd ramp segment time	Sets the 3rd ramp segment time．	0 to 99h59m	0.00		dSP7－4
「П35	TM3S	3rd soak segment time	Sets the 3rd soak segment time．	0 to 99h59m	0.00		dSP7－8
5 ± -4	Sv－4	4th target SV	Sets the 4th target SV of ramp－soak operation．	Within the SV limit．	0\％FS		dSP7－16
574	TM4r	4th ramp segment time	Sets the 4th ramp segment time．	0 to 99h59m	0.00		dSP7－32
1745	TM4S	4th soak segment time	Sets the 4th soak segment time．	0 to 99h59m	0.00		dSP7－64
5u－5	Sv－5	5th target SV	Sets the 5th target SV of ramp－soak operation．	Within the SV limit．	0\％FS		dSP7－128
F\％5\％	TM5r	5th ramp segment time	Sets the 5th ramp segment time．	0 to 99h59m	0.00		dSP8－1
1755	TM5S	5th soak segment time	Sets the 5th soak segment time．	0 to 99h59m	0.00		dSP8－2
$5 \square-5$	Sv－6	6th target SV	Sets the 6th target SV of ramp－soak operation．	Within the SV limit．	0\％FS		dSP8－4
FMEr	TM6r	6th ramp segment time	Sets the 6th ramp segment time．	0 to 99h59m	0.00		dSP8－8
1755	TM6S	6th soak segment time	Sets the 6th soak segment time．	0 to 99h59m	0.00		dSP8－16
$5 \square-7$	Sv－7	7th target SV	Sets the 7th target SV of ramp－soak operation．	Within the SV limit．	0\％FS		dSP8－32
Fח\％	TM7r	7th ramp segment time	Sets the 7th ramp segment time．	0 to 99h59m	0.00		dSP8－64
1775	TM7S	7th soak segment time	Sets the 7th soak segment time．	0 to 99h59m	0.00		dSP8－128
5u－g	Sv－8	8th target SV	Sets the 8th target SV of ramp－soak operation．	Within the SV limit．	0\％FS		dSP9－1
「пロ\％	TM8r	8th ramp segment time	Sets the 8th ramp segment time．	0 to 99h59m	0.00		dSP9－2
5785	TM8S	8th soak segment time	Sets the 8th soak segment time．	0 to 99h59m	0.00		dSP9－4
Mad	Mod	Ramp－soak mode	Selects the power－on start，repeat，and standby functions for ramp－soak operations．	0 to 15	0		dSP9－8

－Parameters of the third block

Parameter display symbol	Parameter name		Description	Setting range	Value prior to delivery	User＇s set value	Parameter mask DSP
ロ－ni	P－n1	Control action	Specifies control action and output at the input burn－out．	0 to 19	0／4		dSP9－16
5 ± -1	Sv－L	SV（Setting value） lower limiter	Sets the lower limit of the SV．	0 to 100\％FS	0\％FS		dSP9－32
5い－H	Sv－H	SV（Setting value） upper limiter	Sets the upper limit of the SV．	0 to 100\％FS	100\％FS		dSP9－64
－14	dLY1	Delay time 1	Delay time or timer value for alarm 1 relay．	0 to 9999 seconds	0		dSP9－128
－1L \square^{1}	dLY2	Delay time 2	Delay time or timer value for alarm 2 relay．	0 to 9999 seconds	0		dSP10－1
－143	dLY3	Delay time 3	Delay time or timer value for alarm 3 relay．	0 to 9999 seconds	0		dSP10－2
Ki	CT	Current transe display	Displays the current detector input value for HB alarm．	－	－		dSP10－4

－Parameters of the third block

Parameter display symbol	Parameter name		Description	Setting range	Value prior to delivery	User＇s set value	Parameter mask DSP
Ha	Hb	HB（Set value of heater break alarm）setting	Sets the operation value that detects the heater break．	0 to 50．0A（Setting to 0．0A turns off the HB alarm．）	0.0		dSP10－8
日1等光	A1hY	Alarm 1 hysteresis	Sets the hysteresis range of ON and OFF of alarm 1.	0 to 50\％FS	1		dSP10－16
ロゴ兄	A2hY	Alarm 2 hysteresis	Sets the hysteresis range of ON and OFF of alarm 2.	0 to 50\％FS	1		dSP10－32
ロゴリコ	A3hY	Alarm 3 hysteresis	Sets the hysteresis range of ON and OFF of alarm 3.	0 to 50\％FS	1		dSP10－64
П100	A1oP	Alarm 1 options	Sets the optional functions of alarms 1 and 2.	000 to 111	000		dSP10－128
	A20P	Alarm 2 options		000 to 111	000		dSP11－1
ワ3ロロ	A30P	Alarm 3 options		000 to 111	000		dSP11－2
PLI	PLC1	Lower limit for output 1	Sets the lower limit for output 1.	－3．0 to 103．0\％	－3．0		dSP11－4
PHE1	PHC1	Upper limit for output 1	Sets the upper limit for output 1.	－3．0 to 103．0\％	103.0		dSP11－8
PLEE	PLC2	Lower limit for output 2	Sets the lower limit for output 2.	－3．0 to 103．0\％	－3．0		dSP11－16
PHLI	PHC2	Upper limit for output 2	Sets the upper limit for output 2.	－3．0 to 103．0\％	103.0		dSP11－32
F［if	PCUT	Output limit types	Sets the limit types of outputs 1 and 2 （breaking the limit，or maintained within the limit）．	0 to 15	0		dSP11－64
Quif 1	oUT1	Output value（MV）display	Displays the value of output 1.	－	－		dSP11－128
ロバコ	oUT2	Output value（MV）display	Displays the value of output 2 ．	－	－		dSP12－1
TLu	rCJ	RCJ（Cold junction compensation）setting	Sets the cold junction compensation function to ON／OFF．	ON：Performs the RCJ （Cold junction compensation）． OFF：Does not perform the RCJ （Cold junction compensation）．	on		dSP12－2
「昛号	GAin	PV gradient		0.001 to 2.000	1.000		dSP12－4
Пロッи	AdJO	User－definable zero adjustment	Shifts the zero point of input value．	－50 to 50\％FS	0		dSP12－8
Raus	AdJS	User－definable span adjustment	Shifts the span of input value．	－50 to 50\％FS	0		dSP12－16
di－ 1	di－1	DI1（Digital input 1） operation	Sets the DI1 operations．	0 to 12	0		dSP12－32
ロL－I	di－2	DI2（Digital input 2） operation	Sets the DI2 operations．	0 to 12	0		dSP12－64
5% na	STno	Station No．	Sets the station No．for communication．	0 to 255	1		dSP12－128
5071	CoM	Parity setting	Sets the parity for communication． （The baud rate is fixed at 9600bps．）	0 ：Odd parity 1 ：Even parity 2：No parity	0		dSP13－1
Proi	PCoL	Communication protocol setting	Switches communication protocol between Modbus and ASCII．	0：Z－ACSII 1：Modbus（RTU）	Depends on the type．		dSP13－2
na－r	Ao－T	Re－transmission output type	Selecting re－transmission output type．	0：PV／1：SV／2：MV／3：DV	0		dSP13－4
Ma－L	Ao－L	Re－transmission base scale	Setting re－transmission base scale．	－100．0 to 100．0\％	0.0		dSP13－4
Пロ－ 14	Ao－H	Re－transmission span scale	Setting re－transmission span scale．	－100．0 to 100．0\％	100.0		dSP13－4
－EתA	rEMO	Remote SV input zero adjustment	Shifts the zero point of input value．	-50 to 50\％FS	0		dSP13－16
－EП5	rEMS	Remote SV input span adjustment	Shifts the span point of the input value．	-50 to 50% FS	0		dSP13－16
r－alt	r－dF	Remote SV input filter constant	Sets the filter constant of remote SV input value．	0.0 to 900.00 seconds	0.0		dSP13－16
55	rSv	Remote SV input value display	Displays the input value of remote SV input．	－	－		dSP13－16
$\begin{aligned} & 1501 \\ & 0509 \\ & 090 \\ & 1010 \\ & 10917 \end{aligned}$	$\begin{aligned} & \text { dSP1 } \\ & \text { dSP9 } \\ & \text { dP10 } \\ & \text { sP13 } \end{aligned}$	Parameter mask	Sets whether or not to display each parameter．	0 to 255	Ordering specifi－ cation		－

PXM of 3-key type			
- Standard type		- Front waterproof type	
$48 \times 48 \mathrm{~mm}$	$72 \times 72 \mathrm{~mm}$	$48 \times 48 \mathrm{~mm}$	$72 \times 72 \mathrm{~mm}$
PXW4	PXW7	PXW4	
Rail mounting types (PXW4, PXZ4, PXV4)			

Features

- Fuzzy control

Excellent controllability is ensured unaffected by overshoot and external disturbance.

- Heater burnout alarm (option)

PXV of 1-stage display and 3-key type

- Standard type

PXV4

- Front waterproof type
$48 \times 48 \mathrm{~mm}$

PXV4

- Ramp/soak function (option)

Control follows the predetermined SV.

- Free line voltage

100 to 240 V AC or 24 V DC/AC line has been prepared.

- Heating and cooling control (option)

A single controller can issue both control outputs for heating and cooling.

- PID with auto tuning

Standard-provided with auto tuning function for calculation of optimum PID parameters.

PXW

Model name: Digital temperature controller (Micro controller X) 3-key type

		45678			910111213		1314
		PXW			2		$\square-\square$
Digit	Specification	Note					
4	<Front panel size> $48 \times 48 \mathrm{~mm}$ $72 \times 72 \mathrm{~mm}$		$\begin{aligned} & \gamma \\ & 4 \\ & 7 \end{aligned}$				
5	<Input signal> Thermocouple (${ }^{\circ} \mathrm{C}$) Thermocouple (${ }^{\circ} \mathrm{F}$) Resistance bulb Pt 100,3-wire (${ }^{\circ} \mathrm{C}$) Resistance bulb Pt 100,3-wire (${ }^{\circ} \mathrm{F}$) 4-20mA DC 1-5V DC						
6	<Control output 1> Contact reverse action output Contact direct action output SSR/SSC drive reverse action output SSR/SSC drive direct action output 4-20mA DC reverse action output 4-20mA DC direct action output			$\begin{aligned} & \text { Y } \\ & \text { A } \\ & \text { B } \\ & \mathbf{C} \\ & \mathbf{D} \\ & \mathbf{E} \\ & \mathbf{F} \\ & \hline \end{aligned}$			
7	<Control output 2> None Contact reverse action output Contact direct action output SSR/SSC drive reverse action output SSR/SSC drive direct action output 4-20mA DC reverse action output 4-20mA DC direct action output	Note 6 Note 6			\downarrow		
8	<Version No.>				2		
9	<Additional specifications> None With process alarm With heater burnout alarm With process alarm + heater burnout alarm With 4 ramp/soak With process alarm + 4 ramp/soak With heater burnout alarm +4 ramp/soak With process alarm + heater burnout alarm + 4 ramp/soak With process alarm (2points) With process alarm (2points) $+4 \mathrm{ramp} /$ soak	Note 8 Note 6 Note 6 Note 8 Note 6 Note 6 Note 9 Note 9			Y 0 1 2 3 4 5 6 7		
10	<Instruction manual and power supply voltage> Japanese, 100 to 240 V AC English, 100 to 240V AC Japanese, 24 V AC/24V DC English, 24V AC/24V DC	Note 7 Note 7				V \mathbf{Y} \mathbf{V} \mathbf{A} \mathbf{B}	
$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$	<Socket> None For rail mounting (8-pin screw terminal) For panel mounting (8-pin screw terminal) For panel mounting (8 -pin soldered terminal) For rail mounting (11-pin screw terminal) For panel mounting (11-pin screw terminal)	Note 1 Note 2 Note 3 Note 4 Note 5				$\begin{array}{lll}\gamma & Y \\ 0 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 4 & 0 \\ 5 & 0\end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
14	<Optional specification> Front panel water-proof structure (NEMA-4X), black case						V

PXZ
Model name: Digital temperature controller (Micro controller X) 8-key type

Note) If not otherwise specified when ordering, the input signal and range are as follows:
Thermocouple input : K thermocouple, 0 to $400^{\circ} \mathrm{C}$ (SV at $0^{\circ} \mathrm{C}$)
Resistance bulb input : 0 to $150^{\circ} \mathrm{C}\left(\mathrm{SV}\right.$ at $\left.0^{\circ} \mathrm{C}\right)$
Voltage input : Scaling 0 to 100% (SV at 0%)
Kind of the input range should be filled in the code except for the above specifications.
Use the front key to change the king of the thermocouple input or resistance bulb input.
Note) Item of $48 \times 48 \mathrm{~mm}$ size requires socket which needs to be specified in the space of 11,12 and 13 digits.
This socket is not required for items of other sizes.
Note1) Type: TP48X
Note2) Type: TP48SB
Note3) Type: ATX1NS
Note4) Type: TP411X
Note5) Type: TP411SBA
Note6) Not available on $48 \times 48 \mathrm{~mm}$ size Heater burnout alarm unit cannot be mounted on current output type. Set the parameter "TC" more than 20sec, or hearter burnout function doesn't work correctly.
Note7) Not available on $72 \times 72 \mathrm{~mm}$ size
Note8) Alarm output (s) : 1point (48 X 48mm type), 2points (other types)
Note9) Avairable only on $48 \times 48 \mathrm{~mm}$ type.

Micro Controller PXW,PXZ,PXV

[2] Specifications PXW/PXZ/PXV

■ Control function - Standard type

Control action	PID control with auto-tuning / auto-tuning with Fuzzy control
Proportional band(P)	0 to 999.9\% of measuring range,setting in 0.1\% steps
Integral time(I)	0 to 3200sec, setting in 1sec step
Differential time(D)	0 to 999.9\%,setting in 0.1\% steps
$\mathrm{P}=0: 2$-position action $1, \mathrm{D}=0$: Proportional action	
Proportional cycle	1 to 150 sec ,setting in 1sec step,relay contact output, SSR/SSC drive output only
Hysteresis width	1 to 50\% of measuring range,2-position action only
Anti-reset wind up tuning	0 to 100% of measuring range,auto setting with auto-tuning
Input sampling cycle	0.5 sec
Control cycle	0.5 sec

■ Control function - Heating/cooling type (option)

Heating proportional band(P)	0 to 999.9\% of measuring range
Cooling proportional band(P)	Heating proportional band \times cooling proportional band coefficient Cooling proportional band coefficient=0 to 100.0 0 ON/OFF action
Integral time(I)	0 to 3200sec for heating and cooling
Differential time(D)	0 to 999.9 sec for heating and cooling
$P, I, D=0: O N / O F F$ action (without dead band) for heating and cooling I,D=0:Proportional action	
Proportional cycle	1 to 150sec, relay contact output,SSR/SSC drive only
Hysteresis width	ON/OFF action for heating and cooling:0.5\% of measuring range
Anti-reset wind up	0 to 100% of measuring range,auto setting with auto-tuning
Overlap/dead band	$\pm 50 \%$ of heating proportional band
Input sampling cycle	0.5 sec
Control cycle	0.5 sec

■ Input

Input signal	Thermocouple : J K R B S T E N PLII Resistance bulb : Pt100 Voltage/current: 1 to 5V DC 4 to 20mA DC			
(Current input is used with supplied 250 2 external				
resistor)		\quad	Measuring range	See Measuring range table. For thermocouple/resistance bulb input, control outputover scale direction is serectable upper side or lower side
:---	:---			

Output - Standard type

Control output
1 of the following 3 types is selected.
Relay contact (SPDT contact):
220 V AC/30V DC, 3A (resistive load)
Mechanical life:10 million cycles or more (no load)
Electrical life:100 thousand cycles or more (rated load)
Minimum switching current:100mA (24V DC)
SSR/SSC drive (voltage pulse):
15 to 30V DC at ON/ 0.5V DC or less at OFF,
Max. current: 60 mA or less
25mA(With alarm 2points on 48X48mm size)
30 mA (at 24 V DC/24V AC supply voltage)
4 to 20mA DC:Allowable load resistance; 600Ω or less

Output - Heating/cooling type (option)
Control output
For dual output type, 1 of the following 3 types is selected on both heating and cooling types. $48 \times 48 \mathrm{~mm}$ type is not acceptable. Relay contact (SPDT contact):
220V AC/30V DC, 3A (resistive load)
Mechanical life:10 million cycles or more (no load) Electrical life:100 thousand cycles or more (rated load) Minimum switching current: 100 mA (24V DC) SSR/SSC drive (voltage pulse):
15 to 30 V DC at ON/ 0.5V DC or less at OFF,
Max. current is 60 mA or less. 4 to 20 mA DC:Allowable load resistance; 600Ω or less (Note) When SSR/SSC drive output of heating/cooling side is selected, the total current should be less than 60mA.

- Setting and indication

Parameter setting method	PXV/PXW; digital setting with 3 keys PXZ:digital setting with 8 keys
PV/SV display method	PXV4,PXZ4;PV/SV select display LED;4 digits,red PXW,PXZ7;PV/SV individual display LED, 4 digits each, PV;red SV; green
Status display	Control output,alarm output heater burnout alarm output,LED lamp (red)
Setting accuracy	0.1% of measuring range or less
Indication accuracy (at $23^{\circ} \mathrm{C}$):	Thermocouple; \pm (0.5% of measuring range) ± 1 digit $\pm 1^{\circ} \mathrm{C}$ R thermocouple 0 to $500^{\circ} \mathrm{C}$; \pm (1% of measuring range) ± 1 digit $\pm 1^{\circ} \mathrm{C}$ B thermocouple 0 to $400^{\circ} \mathrm{C} ; \pm(5 \%$ of measuring range) ± 1 digit $\pm 1^{\circ} \mathrm{C}$ Resistance bulb,voltage,current; \pm (0.5% of measuring range) ± 1 digit

- Alarm (option)

Kind of alarm	See table "Kind of alarm".
Alarm output	Relay contact (SPST contact),
	220 V AC /30V DC, 1A (resisitive load),
	Mechanical life:10 million cycles or more (no load)
	Electrical life:100 thousand cycles or more (rated load)
	Minimum switching current:100mA (24V DC)
	$48 \times 48 \mathrm{~mm}$ type;output..1point or 2points
	Other types;output..2points
Heater burnout	Relay contact (SPST contact),
alarm output	220 V AC/30V DC,1A (resistive load)
	Mechanical life:10 million cycles or more (no load)
	Electrical life:100 thousand cycles or more (rated load)
	Minimum switching current:100mA (24V DC)
	48X48mm type;not available,
	output; 1 point

Power failure processing

Memory protection	Non-volatile memory hold After the recovery of power from failure, control is started at the value before power failure.

Self-check

Method	Monitoring of program error with watchdog timer

Operation and storage condition

Operating temperature	-10 to $50^{\circ} \mathrm{C}$
Operating humidity	90% RH or less (Non condensing)
Storage temperature	-20 to $60^{\circ} \mathrm{C}$

[2] Specifications PXW/PXZ/PXV

\square General specifications

Rated voltage	$\begin{aligned} & \hline 100(-15 \%) \text { to } 240(+10 \%) \text { V AC } 50 / 60 \mathrm{~Hz}, \\ & 24 \mathrm{~V} \text { AC }(\pm 10 \%) 50 / 60 \mathrm{~Hz}, 24 \mathrm{~V} \text { DC }(\pm 10 \%) \\ & \hline \end{aligned}$
Power consumption	10VA or less (100V AC) 15 VA or less (240 V AC, $24 \mathrm{~V} \mathrm{AC}, 24 \mathrm{~V}$ DC)
Insulation resistance	$20 \mathrm{M} \Omega$ or more (500V DC)
Withstand voltage	Power source-Earth,1500V AC,1min Power source-Other,1500V AC,1min Earth-Relay output,1500V AC,1min Earth-Alarm output,1500V AC,1min Other,500V AC,1min
Input impedance	Thermocouple; $1 \mathrm{M} \Omega$ or more Voltage; $400 \mathrm{k} \Omega$ or more Current; 250Ω (external resistor)
Allowable signal source resistance	Thermocouple; 100Ω or less Voltage; $1 \mathrm{k} \Omega$ or less
Allowable wiring resistance	Resistance bulb; 10Ω or less per wire
Reference junction compensation accuracy	$\pm 1^{\circ} \mathrm{C}$:(at $\left.23^{\circ} \mathrm{C}\right)$
PV offset	$\pm 10 \%$ of measuring range
SV offset	$\pm 50 \%$ of measuring range
Input filter	0 to 900.0 sec, setting in 0.1 sec steps (primary lagging filter)
Noise reduction ratio	Normal mode noise ($50 / 60 \mathrm{~Hz}$) ;50dB or more Common mode noise ($50 / 60 \mathrm{~Hz}$) ;140dB or more

■ Other functions

Paramater mask function	Parameter display is disabled by software.
Ramp soak function(option)	4 ramp/4 soak
Heater burnout alarm output (option) unavailable for $\mathbf{4 8 ~ X ~ 4 8 ~ s i z e ~}$	Current detector: CTL-6-S-H for 1 to 30A CTL-12-S36-8F for 20 to 50A Set the parameter "TC" more than 20 sec, or heater burnout function doesn't work correctly.
Applicable standards	UL, C-UL, CE mark

■ Structure

Mounting method	Panel flush mounting or surface mounting Surface mounting;48X48mm type only
External terminal	$48 \times 48 \mathrm{~mm}$ type;8-pin or 11-pin socket Other types;screw terminal (M3.5 screw)
Case material	Plastic
External dimensions	See outline diagrdam.
Mass	$48 \times 48 \mathrm{~mm} ;$ approx 150 g $72 \times 72 \mathrm{~mm} ;$ approx 300g
Protective structure	Front panel water-proof structure; NEMA4X (equivalent to IEC standards IP66)(option) Rear case;IEC IP20
Enclosure color	Standard type;ivory (front panel,case) Water-proof type;black (front panel,case)

\square Scope of delivery

Standard type	48X48mm type;controller,panel mounting bracket, socket (when specified),instruction manual 1volume Other types;controller,panel mounting bracket, instruction manual 1volume
Water-proof type	$48 \times 48 m m$ type;contoroller,panel mounting bracket, socket (when specified), water-proof packing, instruction manual 1volume
Other types;controller,panel mounting bracket,water-proof packing,instruction manual Ivolume	

- Measuring range table

Input signal	Input range(${ }^{\circ} \mathrm{C}$)	Input range(${ }^{\circ} \mathrm{F}$)
Resistance bulb		
Pt100 ${ }^{\text {a }}$	0 to 150	32 to 302
Pt100	0 to 300	32 to 572
Pt100 Ω	0 to 500	32 to 932
Pt100 ${ }^{\text {a }}$	0 to 600	32 to 1112
Pt100 ${ }^{\text {a }}$	-50 to 100	-58 to 212
Pt100 ${ }^{\text {a }}$	-100 to 200	-148 to 392
Pt100 ${ }^{\text {a }}$	-150 to 600	-238 to 1112
Pt100 ${ }^{\text {a }}$	-150 to 850	-238 to 1562
Thermocouple		
J	0 to 400	32 to 752
J	0 to 800	32 to 1472
K	0 to 400	32 to 752
K	0 to 800	32 to 1472
K	0 to 1200	32 to 2192
R	0 to 1600	32 to 2912
B	0 to 1800	32 to 3272
S	0 to 1600	32 to 2912
T	-199 to 200	-328 to 392
T	-150 to 400	-238 to 752
E	0 to 800	32 to 1472
E	-199 to 800	-328 to 1472
N	0 to 1300	32 to 2372
PLII	0 to 1300	32 to 2372
$\begin{array}{\|l\|} \hline \text { DC voltage } \\ 1 \text { to } 5 \mathrm{~V} \text { DC } \\ \hline \end{array}$	Scaling range;-19	9999
$\begin{array}{\|l\|} \hline \text { DC current } \\ 4 \text { to } 20 \mathrm{~mA} \mathrm{DC} \\ \hline \end{array}$	For current input, u 1 to 5V DC input.	250 resistor to obtain

Note) Input signals can be selected within the same type. It is impossible to select input signals of a different type.

Micro Controller PXW,PXZ,PXV

[3]-1 Outline diagram/panel cut [Standard type]

1) $48 \times 48 \mathrm{~mm}$ type
(unit: mm)

Note) PXV4, PXW4 and PXZ4 are common to standard types and water-proof types
2) $72 \times 72 \mathrm{~mm}$ type
Type

[3]-2 Outline diagram/panel cut [Water-proof type]

1) $72 \times 72 \mathrm{~mm}$ type

[4]-1 Connection diagram [for 100 to 240V AC power supply]

1) PXW4 • PXZ4 • PXV4 type

Note1: Use the 250Ω resistance(accessory).
Note2: SSR/SSC drive output and DC4~20mA output are not electrically insulated from inner circuits.
2) PXW7 • PXZ7 type So,non-grounding type sensor must be used.

Note1: Use the 250Ω resistance(accessory).
Note2: SSR/SSC drive output and DC4~20mA output are not electrically insulated from inner circuits. So,non-grounding type sensor must be used.

[4]-2 Connection diagram [for 24V DC/24V AC power supply]

1) PXW4 • PXZ4 • PXV4 type

Note1: Use the 250Ω resistance(accessory).
Note2: SSR/SSC drive output and DC4~20mA output are not electrically insulated from inner circuits. So,non-grounding type sensor must be used.
\! Caution: Before connection to each controller, carefully check the voltage and polarities of the power supply to be used. The above connections correspond to 24 V AC or DC.
If power supply within 100 to 240 V is connected, each controller will be permanently damaged and will not operate.

Micro Controller PXW,PXZ,PXV

[5] Socket outline diagram [Pxw4,Pxz4,Pxv4 type]

TP48SB type (back screw wiring)

TP48X type (rail mounting)

With alarm

TP411X type (rail mounting)

TP411SBA type (mounting panel)

Appearance of various sockets

[6] Alarm code table

Alarm

- Kind of alarm and alarm type code

	$\begin{aligned} & \text { P-AH } \\ & \text { (ALM1) } \end{aligned}$	$\begin{gathered} \text { P-AL } \\ \text { (ALM2) } \end{gathered}$	Kind of alarm	Action diagram
	0	0	Without alarm	$\longrightarrow P V$
Absolute alarm	1	1	High absolute alarm	
	2	2	Low absolute alarm	
	3	3	High absolute alarm (with hold)	
	4	4	Low absolute alarm (with hold)	
Deviation alarm	5	5	High deviation alarm	
	6	6	Low deviation alarm	
	7	7	High/low deviation alarm	
	8	8	High deviation alarm (with hold)	
	9	9	Low deviation alarm (with hold)	
	10	10	High/low deviation alarm(with hold)	
Zone	11	11	High/low range deviation alarm(ALM1/2 individual action)	
	-	12	High/low range absolute alarm	
	-	13	High/low range deviation alarm	
	-	14	High range absolute alarm and low range deviation alarm	
	-	15	High range deviation alarm and low range absolute alarm	

Note: (1) Alarm output is ON in the alarm band marked WIIIn
(2) What is alarm with hold?

The alarm is not turned ON immediately even when the measured value is in the alarm band.It turns ON when it goes out the alarm band and enters again.

Reference data
Comparison of the alarm code with conventional types Conversion table for PYZ/W series " $\mathrm{P}-\mathrm{Ab}$ " and PX series "P-AH" "P-AL"

- Alarm code conversion table(PYV/W/Z \rightarrow PXV/W/Z)

Kind of alarm	PXV/W/Z code	PXV/W/Z code	
	P-Ab	P-AH	P-AL
High deviation alarm	10	5	0
Low deviation alarm	5	0	6
Low deviation alarm with hold	69	0	9
High/low deviation alarm	15	5	6
High/low deviation alarm with hold	79	5	9
High-high absolute alarm	19	1	1
High absolute alarm	2	1	0
Low absolute alarm	1	0	2
Low absolute alarm with hold	65	0	4
High/low absolute alarm	3	1	2
High/low absolute alarm with hold	67	1	4
High absolute high deviation alarm	23	1	5
High absolute low deviation alarm	7	1	6
High deviation low absolute alarm	11	5	2
High deviation low absolute alarm with hold	75	5	4
High absolute low deviation alarm with hold	71	1	9
High/low absolute range alarm	179	-	12
High/low deviation range alarm	191	-	13
High absolute low deviation range alarm	183	-	14
High deviation low absolute range alarm	187	-	15

Heater burnout alarm current detector (CT)

- Specification : For 20-50A
- Type : CTL-12-S36-8F

- Specification : For 1-30A
- Type : CTL-6-S-H

Micro Controller PXW,PXZ,PXV

[7] Parameter table

PXW/PXV parameter table

Note : Figure with \%* table below means "\% of measuring range",

	Parameter	Setting range	Meaning of parameter	Unit	Value prior to delivery	User's set value	DSP assignment
No. 1 block parameter	PRoG	roFF/rrUn/rHLd	Ramp soak control (start/stop/pause)	-	-		dsp1-1
	H	0-100\%*	High alarm (ALM1) set value	Industrial/deviation industrial value	10		dsp1-2
	L	0-100\%*	Low alarm (ALM2) set value	Industrial/deviation industrial value	10		dsp1-4
	HB	0.0-50.0	Heater burnout detect value setting (function OFF at 0)	A (ampere)	0.0		dsp1-8
	AT	0-2	Auto-tuning command (0:OFF/1:Standard/2:Low PV)	-	0		dsp1-16
	LoC	0-2	Setting lock (0:OFF/1:All lock/2:Lock,other than SV)	-	0		dsp1-32
No. 2 block parameter	P	0.0-999.9	Proportional band (2-position action at	\%	5.0		dsp1-128
	1	0-3200	Integral time (integration OFF at 0)	Second	240		dsp2-1
	D	0.0-999.9	Differentional time (Differentiation OFF at 0)	Second	60.0		dsp2-2
	TC	1-150	Output 1 proportional cycle (RY:30/SSR:2/4 to 20mA:0)	Second	30/2/0		dsp2-4
	HYS	0-50\%*	2-position action hysteresis	Deviation industrial value	1		dsp2-8
	TC2	1-150	Output 2 proportional cycle (RY:30/SSR:2/4 to 20mA:0)	Second	30/2/0		dsp2-16
	CooL	0.0-100.0	Cooling side proportional band coefficient	-	1.0		dsp2-32
	db	-50.0-50.0	Dead band	\%	0.0		dsp2-64
	bAL	-100.0-100.0	Manual reset value (single 0.0/dual 50.0 prior to delivery	\%	0.0/50.0		dsp2-128
	Ar	0-100\%*	Anti-reset wind up (100\%** prior to delivery)	Deviation industrial value	100\%*		dsp3-1
	P-n2	0-16	Input type code	-	Ordering specification		dsp3-2
	P-SL	-1999-9999	0\% input scale	Industrial value	Ordering specification Note3)		dsp3-4
	P-SU	-1999-9999	100\% input scale	Industrial value	Ordering specification Note3)		dsp3-8
	P-dP	0-2	Decimal point position code (0:س/1:س.[/2:T.T)	-	Ordering specification Note3)		dsp3-16
	P-AH	0-11	High (ALM2) type code	-	Ordering specification		dsp3-32
	P-AL	0-15	Low (ALM1) type code	-	Ordering specification		dsp3-64
	PVOF	-10-10\%*	Input bias	Deviation industrial value	0		dsp3-128
	SVOF	-50-50\%*	Set value bias	Deviation industrial value	0		dsp4-1
	P-F	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ designation	-	Ordering specification		dsp4-2
	STAT	...	Ramp soak present position	-	-		dsp4-4
	SV-1	0-100\%*	No. 1 target value	Industrial value	0\% Note5)		dsp4-8
	TM1r	0-99h59m	No. 1 ramp segment time	Hour/minute	0.00		dsp4-16
	TM1S	0-99h59m	No. 1 soak segment time	Hour/minute	0.00		dsp4-32
	SV-2	0-100\%*	No. 2 target value	Industrial value	0\% Note5)		dsp4-64
	TM2r	0-99h59m	No. 2 ramp segment time	Hour/minute	0.00		dsp4-128
	TM2S	0-99h59m	No. 2 soak segment time	Hour/minute	0.00		dsp5-1
	SV-3	0-100\%*	No. 3 target value	Industrial value	0\% Note5)		dsp5-2
	TM3r	0-99h59m	No. 3 ramp segment time	Hour/minute	0.00		dsp5-4
	TM3S	0-99h59m	No. 3 soak segment time	Hour/minute	0.00		dsp5-8
	SV-4	0-100\%*	No. 4 target value	Industrial value	0\% Note5)		dsp5-16
	TM4r	0-99h59m	No. 4 ramp segment time	Hour/minute	0.00		dsp5-32
	TM4S	0-99h59m	No. 4 soak segment time	Hour/minute	0.00		dsp5-64
	Mod	0-15	Control designation before and after ramp soak	-	$0 \quad$ Note4)		dsp5-128
No. 3 block parameter	P-n1	0-19	Control type code	-	Ordering specification		dsp6-2
	P-dF	0.0-900.0	Input filter time constant (filter OFF at 0)	Second	5.0		dsp6-4
	P-An	0-50\%*	Alarm hysteresis	Deviation industrial value	1		dsp6-8
	PLC1	-3.0-103.0	Output 1 minimum ON pulse width	\%	-3.0		dsp6-32
	PHC1	-3.0-103.0	Output 1 minimum OFF pulse width	\%	103.0		dsp6-64
	PLC2	-3.0-103.0	Output 2 minimum ON pulse width	\%	-3.0		dsp6-128
	PHC2	-3.0-103.0	Output 2 minimum OFF pulse width	\%	103.0		dsp7-1
	FUZY	OFF/ON	Fuzzy control ON/OFF designation	-	OFF		dsp7-4
	ADJO	-50-50\%*	Zero shift	Deviation industrial value	0		dsp7-16
	ADJS	-50-50\%*	Span shift	Deviation industrial value	0		dsp7-32
	dSP1-7	0-255	Parameter display mask designation code	-	-		-

[^1]
[7] Parameter table

PXZ parameter table

Note : Figure with \%* table below means "\% of measuring range".

	Parameter	Setting range	Meaning of parameter	Unit	Value prior to delivery	User's set value	DSP assignment
No. 1 block parameter	PRoG	oFF/rUn/HLd	Ramp soak control (start/stop/pause)	-	-		dsp1-1
	P	0.0-999.9	Proportional band (2-position action at 0)	\%	5.0		dsp1-2
	1	0-3200	Integral time (integration OFF at 0)	Second	240		dsp1-4
	D	0.0-999.9	Differentional time (Differentiation OFF at 0)	Second	60.0		dsp1-8
	AL	0-100\%*	Low alarm (ALM2) set value	Industria/deviation industrial value	10		dsp1-16
	AH	0-100\%*	High alarm (ALM1) set value	Industria/deviation industrial value	10		dsp1-32
	TC	1-150	Output 1 proportional cycle (RY:30/SSR:2/4 to 20mA:0)	Second	30/2/0		dsp1-64
	HYS	0-50\%*	2-position action hysteresis	Deviation industrial value	1		dsp1-128
	Hb	0.0-50.0	Heater burnout detect value setting (function OFF at 0)	A (ampere)	0.0		dsp2-1
	AT	0-2	Auto-tuning command (0:OFF/1:Standard/2:Low PV)	-	0		dsp2-2
	TC2	1-150	Output 2 proportional cycle (RY:30/SSR:2/4 to 20mA:0)	Second	30/2/0		dsp2-4
	Cool	0.0-100.0	Cooling side proportional band coefficient	-	1.0		dsp2-8
	db	-50.0-50.0	Dead band	\%	0.0		dsp2-16
	PLC1	-3.0-103.0	Output 1 minimum ON pulse width	\%	-3.0		dsp2-32
	PHC1	-3.0-103.0	Output 1 minimum OFF pulse width	\%	103.0		dsp2-64
	bAL	-100.0-100.0	Manual reset value (single $0.0 /$ dual 50.0 prior to delivery	\%	0.0/50.0		dsp3-1
	Ar	0-100\%*	Anti-reset wind up (100\%** prior to delivery)	Deviation industrial value	100\%*		dsp3-2
	LoC	0-2	Setting lock (0:OFF/1:All lock/2:Lock,other than SV)	-	0		dsp3-4
	STAT	...	Ramp soak present position	-	-		dsp3-8
	SV-1	0-100\%*	No. 1 target value	Industrial value	0\% Note5)		dsp3-16
	TM1r	0-99h59m	No. 1 ramp segment time	Hour/minute	0.00		dsp3-32
	TM1S	0-99h59m	No. 1 soak segment time	Hour/minute	0.00		dsp3-64
	SV-2	0-100\%*	No. 2 target value	Industrial value	0\% Note5)		dsp3-128
	TM2r	0-99h59m	No. 2 ramp segment time	Hour/minute	0.00		dsp4-1
	TM2S	0-99h59m	No. 2 soak segment time	Hour/minute	0.00		dsp4-2
	SV-3	0-100\%*	No. 3 target value	Industrial value	0\% Note5)		dsp4-4
	TM3r	0-99h59m	No. 3 ramp segment time	Hour/minute	0.00		dsp4-8
	TM3S	0-99h59m	No. 3 soak segment time	Hour/minute	0.00		dsp4-16
	SV-4	0-100\%*	No. 4 target value	Industrial value	0\% Note5)		dsp4-32
	TM4r	0-99h59m	No. 4 ramp segment time	Hour/minute	0.00		dsp4-64
	TM4S	0-99h59m	No. 4 soak segment time	Hour/minute	0.00		dsp4-128
	Mod	0-15	Control designation before and after ramp soak	-	$0 \quad$ Note4)		dsp5-1
No. 2 block parameter	P-n1	0-19	Control type code	-	Ordering specification		dsp5-4
	P-n2	0-16	Input type code	-	Ordering specification		dsp5-8
	P-dF	0.0-900.0	Input filter time constant (filter OFF at 0)	Second	5.0		dsp5-16
	P-SL	-1999-9999	0\% input scale	Industrial value	Ordering specification Note3)		dsp5-32
	P-SU	-1999-9999	100\% input scale	Industrial value	Ordering specification Note3)		dsp5-64
	P-AL	0-15	Low(ALM1)type code	-	Ordering specification		dsp5-128
	P-AH	0-11	High(ALM2)type code	-	Ordering specification		dsp6-1
	P-An	0-50\%*	Alarm hysteresis	Deviation industrial value	1		dsp6-2
	P-dP	0-2		-	Ordering specification Note3)		dsp6-4
	PVOF	-10-10\%*	Input bias	Deviation industrial value	0		dsp6-16
	SVOF	-50-50\%**	Set value bias	Deviation industrial value	0		dsp6-32
	P-F	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ designation	-	Ordering specification		dsp6-64
	PLC2	-3.0-103.0	Output 2 minimum ON pulse width	\%	-3.0		dsp6-128
	PHC2	-3.0-103.0	Output 2 minimum OFF pulse width	\%	103.0		dsp7-1
	FUZY	OFF/ON	Fuzzy control ON/OFF designation	-	OFF		dsp7-2
	ADJO	-50-50\%*	Zero shift	Deviation industrial value	0		dsp7-8
	ADJS	-50-50\%*	Span shift	Deviation industrial value	0		dsp7-16
	dSP1-7	0-255	Parameter display mask designation code	-	-		-

[^2]
DIN $24 \times 48 \mathrm{~mm}$ size

An alarm setter with on/off contact output.
Most suited for detecting overheat in machines, equipments, etc.

- Front panel having a DIN size of $24 \times 48 \mathrm{~mm}$.
- Because thermocouples (5 types) and thermistors (0 to $100^{\circ} \mathrm{C}$) are connectable.
- Alarm set value and measured temperature value can be checked promptly using the front keys.
- This thermostat is capable of issuing 2 relay contact outputs. Therefore, any output of Upper/Lower limit pair, 2 upper limit and 2 lower limit can be selected.
- Mountable to a DIN rail using the DIN rail mounting adapter available at option. With this adapter, also mountable to a wall.

Specifications

Item	Specification
Input	Number of inputs: 1 Input signal and measurable range: Refer to Table 1. Allowable signal source resistance: Thermocouple input 100Ω max Measurement cycle: 2 sec . or less Burnout function: Thermocouple input: UUU display Thermistor input: LLL display (Upscale or downscale at burnout settable) Input impedance: Thermocouple input $1 \mathrm{M} \Omega$ or higher Input filter: 0 to 90 sec . (settable in 1 sec . steps) Primary lag filter Input value compensation: Settable within $\pm 10 \%$ of measurable range
Indication	Indication means: LCD (without back light) Value/parameter indication: 4 digits of 7 segments each (However, at the 1st digit, only - or 1 is indicated within -999 to 1999.) Contents of indication: Measured value, alarm set value 1, alarm set value 2, various parameters Each indicator of alarms 1 and $2,{ }^{\circ} \mathrm{C}$ scale
Operation	Number of keys: 3 keys, sheet type keys (embossed) Alarm value setting resolution: $1^{\circ} \mathrm{C}$ Key lock function: (Change of setting can be inhibited.)
Accuracy	Indication accuracy: Refer to Table 1. (However, error of a temperature sensor is not included.) Reference contact compensation error: $\pm 3^{\circ} \mathrm{C}$ (at $23^{\circ} \mathrm{C}$)
Alarm output	Number of outputs: 1 or 2 (as specified in CODE SYMBOLS) Contact structure: 1a contact Alarm type: Refer to Table 2. Contact capacity: 220 V AC/30 V DC, 2 A (resistance load) 220 AC/30 DC, 1 A (inductive load) Mechanical life of contact: 20 million activations or more (100 activations $/ \mathrm{min}$.) Electrical life of contact: 100,000 activations or more (rated load) Output resetting cycle: 2 sec . or less Alarm value settable range: Settable within 0 to 100% of measurable range Hysteresis width settable range: 0 to 110% of measurable range (settable in $1^{\circ} \mathrm{C}$ steps) Alarm action delay time: Settable within 1 to 120 sec .
Power supply	Power supply voltage: $100 \mathrm{~V}(-15 \%)$ to $240 \mathrm{~V}(+10 \%)$ AC $50 / 60 \mathrm{~Hz}$ ($\pm 10 \%$) Power consumption: 3 VA max. (with 100 V AC), 6 VA max. (with 240 V AC)
Operating conditions	Ambient temperature: 0 to $50^{\circ} \mathrm{C}$ Ambient humidity: 90% RH max. (condensation unallowable)
Applicable standards	UL, C-UL, CE mark.
Body structure	Mounting method: Panel flush mounting External dimensions (H x W x D): $24 \times 48 \times 85 \mathrm{~mm}$ Weight: Approx. 100 g Casing material: Plastic (corresponding to flame resistance grade UL94V-0) Front protective structure: IP66 (corresponding to NEMA-4X) when using Fuji's genuine front waterproof packing part External terminals: Plug-in type (for bar terminals) Finish color: Ivory

Alarm output hysteresis width

Input signal, measurable range and indication accuracy (Table 1)

Input signal		Measurable range $\left({ }^{\circ} \mathrm{C}\right)$	Minimum resolution	Indication accuracy
Thermocouple	J	0 to 800	$1^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$
	K	0 to 1200	$1^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$
	R	0 to 1600	$4^{\circ} \mathrm{C}$	$4^{\circ} \mathrm{C}$
	T	0 to 400	$1^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$
	E	0 to 600	$1^{\circ} \mathrm{C}$	$3^{\circ} \mathrm{C}$
Thermistor	$\mathrm{PB}-36$	0 to 100	$1^{\circ} \mathrm{C}$	$4^{\circ} \mathrm{C}$

Note 1) Correct indication is not ensured within a range from 0 to $500^{\circ} \mathrm{C}$ for an R type thermocouple.
Note 2) Switching between a thermistor and a thermocouple is not allowed. Thermocouple input type can be changed by front key operation.

- Alarm types (Table 2)

Code of PA1, 2	Alarm direction	Set value notation	With holding (Note 2)	Relay action action at alarm at alarm	Action diagram (Note 1)
0	No alarm	-	-	-	\triangle
1	Upper limit	Absolute value	No	Relay excitation	
2	Lower limit	Absolute value	No	Relay excitation	
3	Upper limit	Absolute value	Yes	Relay excitation	
4	Lower limit	Absolute value	Yes	Relay excitation	
5	Upper limit	Absolute value	No	Relay nonexcitation	
6	Lower limit	Absolute value	No	Relay nonexcitation	
7	Upper limit	Absolute value	Yes	Relay nonexcitation	
8	Lower limit	Absolute value	Yes	Relay nonexcitation	

(Note 1) How to read action
area: A range in which "ALM1 or ALM2" is indicated on LCD at the front. area: A range in which alarm relay is excited
\triangle point: Alarm set value
The horizontal axis represents measured values (PV).
(Note 2) What is the hold function? Even if the process value is within the alarm range when turning on power, the alarm does not turn on immediately but only after it leaves and then returns to the alarm range.

DIN rail mounting

\square Model

Input signal	Temperature sensor	Number of alarm	Model
Thermocouple	Option	1	PAS3K1Y1
		2	PAS3K1A1
	Provided	1	PAS3H1Y1
		2	PAS3H1A1

Optional items

Contents	Model
DIN rail mounting adapter	ZZP *CTK368715P1

- Setting at delivery

Measurable range	K thermocouple input (0 to $1200^{\circ} \mathrm{C}$) Thermistor input (0 to $100^{\circ} \mathrm{C}$)
Alarm set value	K thermocouple input: For 1-point alarm (upper limit $1200^{\circ} \mathrm{C}$) K thermocouple input: For 2-point alarm (upper limit $1200^{\circ} \mathrm{C}$, lower limit alarm $0^{\circ} \mathrm{C}$) Thermistor input: For 1-point alarm (upper limit $100^{\circ} \mathrm{C}$) Thermistor input: For 2-point alarm (upper limit $100^{\circ} \mathrm{C}$, lower limit alarm $0^{\circ} \mathrm{C}$)
Alarm hysteresis width	$1^{\circ} \mathrm{C}$
Alarm delay time	0 sec .
Indication	Measured value
Burnout	Upscale at burnout
Input filter	5 sec .
Input value compensation	0\%

Note 1) Switching between a thermistor and a thermocouple is not allowed.
Note 2) Thermocouple input type can be changed by front key operation.

Scope of delivery

Thermostat unit, panel-mounting adapter,
front waterproof packing
Thermistor sensor added for thermistor input

\square Atached thermistor sensor

- Attachment for thermistor-input thermostat

Measurable range	0 to $100^{\circ} \mathrm{C}$
B constant	3390 K
Nominal resistance value	$6 \mathrm{k} \Omega\left(0^{\circ} \mathrm{C}\right)$
Lead wire	Heat-resisting vinyl chloride wire
Lead wire length	500 mm
Lead wire heat resisting temperature	-20 to $105^{\circ} \mathrm{C}$
Color code	Black
Accuracy	Within $2^{\circ} \mathrm{C}$

- Outline diagram (unit: mm)

Connection diagram

Outline diagram (unit:mm)

Panel cutout

DIN rail mounting adapter (option)

For mounting on wal

Tightening torque 0.49 Nm or less

Usable wiring materials

- Wire (TYPE: Single wire)

Gauge: AWG28 ($0.1 \mathrm{~mm}^{2}$) to AWG16 (1.25 mm²) AWG28 to AWG16 Strip-off length: 5 to 6 mm

- Bar terminal

Dimension of strip-off conductor section: $2 \times 1.5 \mathrm{~mm}$ or smaller
Length of strip-off conductor section: 5 to 6 mm

List of temperature controllers

PX Series

PX Series

3-key type with PV/SV selective display	3-key type with PV/SV independent display	3-key type with PV/SV independent display	8-key type with PV/SV selective display	8-key type with PV/SV independent display	Classification
PXV4	PXW4	PXW7	PXZ4	PXZ7	Type
	PXW4				
		PXW7		PXZ7 \square (72×72)	Waterproof type
\bigcirc	-		\bigcirc		Pt100
-	\bigcirc		\bigcirc		J thermocouple
-	\bigcirc		\bigcirc		K thermocouple
\bigcirc	\bigcirc		\bigcirc		R thermocouple
\bigcirc	\bigcirc		\bigcirc		B thermocouple
\bigcirc	\bigcirc		\bigcirc		S thermocouple
\bigcirc	-		\bigcirc		T thermocouple
-	-		-		E thermocouple $\underline{\text { @ }}$
-	-		-		N thermocouple
-	\bigcirc		\bigcirc		PLII thermocouple
-	\bigcirc		\bigcirc		1 to 5V DC
(With resistor)	- (With resistor)		- (With resistor)		4 to 20 mA DC
-	-		\bigcirc		Relay
\bigcirc	\bigcirc		\bigcirc		For SSR/SSC drive
-	-		\bigcirc		4 to 20 mA DC
\bigcirc	\bigcirc		\bigcirc		ON-OFF
\bigcirc	-		-		PID
-	\bigcirc		\bigcirc		Auto tuning PID 으
\bigcirc	\bigcirc		\bigcirc		Fuzzy
-	-		-		Self-tuning
-	-	-	-	-	Heating/cooling control
$\pm 0.5 \%$ FS ± 1 digit $\pm 1^{\circ} \mathrm{C}$	$\pm 0.5 \% \mathrm{FS} \pm 1$ digit $\pm 1^{\circ} \mathrm{C}$		$\pm 0.5 \% \mathrm{FS} \pm 1$ digit $\pm 1^{\circ} \mathrm{C}$		Indicating accuracy
-	-		-		Communicating function (RS-485)
-	-		-		Re-transmission output in 4 to 20 mA DC
-	-		-		Timer function
-	-		-		Digital input
- (4 ramp/soak)	- (4 ramp/soak)		- (4 ramp/soak)		Ramp soak function
-	-		-		Alarm output
-	-	-	-	-	Heaier burnout darm (current output unavailable)
$10010240 \mathrm{VaC}, 5060 \mathrm{Hzor} 24 \mathrm{VaCDC}$	100 to $240 \mathrm{~V} \mathrm{AC} ,50 / 60 \mathrm{~Hz}$ or 24 V AC/DC				Power supply voltage
-	\bigcirc		\bigcirc		Front waterproof structure

SPECIAL ATTENTION NEEDED for all Micro Controller X series products

(Please read carefully the following instructions.)

\triangle WARNING Over-temperature Protection

Any control system design should take into account that any part of the system has the potential to fail.

For temperature control systems, continued heating should be considered the most dangerous condition, and the machine should be designed to automatically stop heating if unregulated due to the failure of the control unit or for any other reason.

The following are the most likely causes of unwanted continued heating:

1) Controller failure with heating output constantly on
2) Disengagement of the temperature sensor from the system
3) A short circuit in the thermocouple wiring
4) A valve or switch contact point outside the system is locked to keep the heat switched on.

In any application where physical injury or destruction of equipment might occur, we recommend the installation of independent safety equipment, with a separate temperature sensor, to disable the heating circuit in case of overheating.

The controller alarm signal is not designed to function as a protective measure in case of controller failure.

Fuji Electric Systems Co.,Ltd.

Head Office

Gate City Ohsaki, East Tower,
11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan http://www.fesys.co.jp/eng

Instrumentation Div

International Sales Dept.
No. 1 , Fuji-machi, Hino-city, Tokyo,191-8502 Japan
Phone : 81-42-585-6201,6202
Fax: 81-42-585-6187
http://www.fic-net.jp/eng

[^0]: Note 1：When a customer does not specify the settings while ordering，the following settings are selected as factory defaults．
 Thermocouple input ：Thermocouple K Measured range： 0 to $400^{\circ} \mathrm{C}$
 Resistance bulb input ：Measured range： 0 to $150^{\circ} \mathrm{C}$
 Voltage／Current input ：
 Scaling： 0 to 100\％

[^1]: Note 1) Items shown in \square are not indicated at the time of delivery. Note 2) Parameters shown in \square are indicated in accordance with your model.
 Note 3) When you change these value, check all parameter's value after changing these value.
 Note 4) Don't change this value from 0 to others. Note5) 0% is equal to the setting value of "P-SL".

[^2]: Note 1) Items shown in \square are not indicated at the time of delivery. Note 2) Parameters shown in \square are indicated in accordance with your model.
 Note 3) When you change these value, check all parameter's value after changing these value.
 Note 4) Don't change this value from 0 to others. Note5) 0% is equal to the setting value of "P-SL".

